随机规划与随机控制ALM模型简介
目前的ALM模型越来越多地运用到随机规划或随机控制的方法。
随机规划模型主要是通过运用事件树、生成场景等元素,来为金融机构的资金配置提供一个描述未来资产价格、收益和风险等不确定因素在某种概率条件下的变动趋势的分析框架。金融机构在处理资金配置中会面临复杂的限制条件,由于随机规划模型和方法接纳了一些更接近于现实的假设,并提供了一种动态方法来解决多期资金配置中的问题,因此它可以在一个框架中同时处理交易成本、多元状态变量、市场不完全性、税收和交易限制、监管限制、公司政策要求等多因素问题,从而为金融机构大批量地处理和分析多种不确定因素的影响提供了可能性。
国外金融学者对多期随机规划模型在金融机构的实际运用进行了大量的研究,并取得了许多成果。例如,布拉德里和克朗斯于1973年,库斯和茨姆巴于1986年为银行的ALM设计出了随机线性规划模型;马尔维和瓦拉迪米罗于1992年为金融机构的资产配置提出了一个多期随机网络模型;卡里罗等于1994年为一家日本保险公司的资产负债管理问题构造了一个多期随机线性模型;希勒和厄可斯腾,泽尼尔斯,古拉伯等则在20世纪90年代中期分别为固定收益证券管理构建了不同的随机规划模型。
其中公认比较有代表性的应该当属库斯和茨姆巴于1986年为温哥华储蓄信贷协会的5年资金规划期设计出的一个简单补偿的多期随机线性规划模型,极大地推动了商业银行ALM理论的研究。在库斯-茨姆巴模型之后,ALM理论的另一里程碑式的贡献是卡里罗等创建的Russell-Yasuda Kasai模型。Russell-Yasuda Kasai模型在日本Yasuda保险公司进行尝试性运用,使该公司在满足账面价值规则及条例管制的同时,能遵循公司的经济价值,而且,该模型还可以对与公司业务环境相关联的事件结果来进行资产配置和负债管理决策,消除未来资产负债价值的不确定性。在使用这一模型的两年内,即1991年和1992年,按这一模型设计的投资策略,使Yasuda公司获得了7900万美元的额外收益。
随机控制方法以状态的连续统表示不确定状态,连续统的特征以少量服从联合马尔可夫过程的状态向量描述 。Brennan et al.分析了可以在债券、股票和现金方面投资的投资组合问题,假定有三个状态变量影响期望资产回报的时间变化,这三个变量即短期利率、长期债券利息率及股票资产组合分红收益。该文假定投资者没有负债,假定负债的期望增长率依赖于状态变量的水平,将负债包括进去相对来说很简单直接。如前所述,状态向量服从联合马尔可夫过程,该过程假设为以下形式:
dr = μrdt + σrdzr
dl = μldt + σldzl
dδ − μδdt + σδdzδ
股票与债券由下式给定:
其中dS/S为股票组合的回报率,dB/B为债券的瞬时总回报。参数μiσi为状态变量r,l,δ的at most函数,dzi为维纳过程的增量。维纳过程增量间的相关系数为ρrl等。
定义W为财富,其效用假定为等弹性形式,即对于τ时r<的情况下,;定义x为组合中股票的比例,y为康索尔债券的比例,Bellman方程为:
maxx,yE[dV] = 0
解其一阶条件,可以找到最优控制解x和y,该过程可以由经验数据估计,投资者的最优控制问题可以通过参数值的估计得到解决。
Brennan和Schwartz通过允许投资者在短期利率期货如股票、债券或现金上采取长线或短线的情况扩展了这个模型,通过分析,他们认为这样的投资机会可以显著改善期望效用。其他一些研究人员利用这个理论讨论了大学捐赠基金的优化投资策略问题等。