发布资金信息 发布项目融资 申请上市辅导 发布金融峰会 发布文章资讯
  • 首页
  • 项目融资
  • 投资意向
  • 金融人才网
  • 金融峰会
  • 金融学院
  • 中投融俱乐部
  • 投行快讯
  • 私募股权
  • 股票投资
  • 券商业务
  • 香港上市
  • 均值-方差模型

       时间:2018-04-25 22:34:41     浏览:94    评论:0    
    核心提示:概述  均值-方差模型投资者将一笔给定的资金在一定时期进行投资。在期初,他购买一些证券,然后在期末卖出。那么在期初他要决定购买哪些证券以及资金在这些证券上如何分配,也就是说投资者需要在期初从所有可能的证券组合中选择一个最优的组合。这时投资者的决策目标有两个:尽可能高的收益率和尽可能低的不确定性风险。

    概述
      均值-方差模型投资者将一笔给定的资金在一定时期进行投资。在期初,他购买一些证券,然后在期末卖出。那么在期初他要决定购买哪些证券以及资金在这些证券上如何分配,也就是说投资者需要在期初从所有可能的证券组合中选择一个最优的组合。这时投资者的决策目标有两个:尽可能高的收益率和尽可能低的不确定性风险。最好的目标应是使这两个相互制约的目标达到最佳平衡。 由此建立起来的投资模型即为均值-方差模型。分析与理解

    核心问题

      证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。 那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。正是在这样的背景下,在50年代和60年代初,马可维兹理论应运而生。

    假设分析

      该理论依据以下几个假设:
      1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。
      2、投资者是根据证券的期望收益率估测证券组合的风险。
      3、投资者的决定仅仅是依据证券的风险和收益。
      4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。
      根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型:
      目标函数:minб2=∑ ∑xixjCov
      rp= ∑ xiri
      限制条件: 1=∑Xi
      或 1=∑Xi xi>≥0
      其中rp为组合收益, ri为第i只股票的收益,xi、 xj为证券 i、j的投资比例,б2为组合投资方差,Cov 为两个证券之间的协方差。该模型为现代证券投资理论奠定了基础。上式表明,在限制条件下求解Xi 证券收益率使组合风险б2最小,可通过朗格朗日目标函数求得。其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目上的投资比例,使其总投资风险最小。不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。
     
    打赏
     
    更多>同类金融学院
    0相关评论

    推荐图文
    推荐金融学院
    点击排行
    关于我们 | 组织结构 | 企业文化 | 办公环境 | 经营动态 | 管理团队 | 行为准则 | 投资策略 | 投资保障 | 风险控制 | 客户案例 | 联系我们 | 俱乐部微信群
    战略合作 | 广告合作 | 友情链接 | 网站地图 | RSS订阅
    Copyright © 2006-2021 投融网 Inc. All rights reserved.
    ICP备案号:粤ICP备16012416号
    联系我们
    QQ咨询
    电话咨询
    email
    在线留言
    微信联系
    返回顶部